Microeconomic Models for Long-Memory in the Volatility of Financial Time Series

نویسندگان

  • Alan KIRMAN
  • Piotr Kokoszka
  • Remigijus Leipus
  • Donatas Surgailis
چکیده

We show that a class of microeconomic behavioral models with interacting agents, introduced by Kirman (1991, 1993), can replicate the empirical long-memory properties of the two rst conditional moments of nancial time series. The essence of these models is that the forecasts and thus the desired trades of the individuals in the markets are in uenced, directly, or indirectly by those of the other participants. These \ eld e ects" generate \herding" behaviour which a ects the structure of the asset price dynamics. The series of squared returns and absolute returns generated by these models display long-memory, while the returns are uncorrelated. Furthermore, this class of models is able to replicate the common long-memory properties in the volatility and co-volatility of nancial time series, uncovered by Teyssi ere (1997,1998). These properties are investigated by using various model independent tests and estimators, i.e., semiparametric and nonparametric, introduced by Lo (1991), Kwiatkowski, Phillips, Schmidt and Shin (1992), Robinson (1995b), Lobato and Robinson (1998), Giraitis, Kokoszka and Leipus (1999), Giraitis, Kokoszka, Leipus and Teyssi ere (1999). The relative performance of these tests and estimators for long-memory in a non-standard data generating process is then assessed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies in Nonlinear Dynamics and Econometrics

We show that a class of microeconomic behavioral models with interacting agents, derived from Kirman (1991) and Kirman (1993), can replicate the empirical long-memory properties of the two first-conditional moments of financial time series. The essence of these models is that the forecasts and thus the desired trades of the individuals in the markets are influenced, directly or indirectly, by t...

متن کامل

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

Long Memory in Stock Returns: A Study of Emerging Markets

The present study aimed at investigating the existence of long memory properties in ten emerging stock markets across the globe. When return series exhibit long memory, it indicates that observed returns are not independent over time. If returns are not independent, past returns can help predict future returns, thereby violating the market efficiency hypothesis. It poses a serious challenge to ...

متن کامل

Core Discussion Paper 2003/26 Interaction Models for Common Long–range Dependence in Asset Price Volatilities

We consider a class of microeconomic models with interacting agents which replicate the main properties of asset prices time series: non-linearities in levels and common degree of long-memory in the volatilities and co-volatilities of multivariate time series. For these models, long-range dependence in asset price volatility is the consequence of swings in opinions and herding behavior of marke...

متن کامل

Periodic Long Memory GARCH models

A distinguishing feature of the intra-day time-varying volatility of financial time series is given by the presence of long-range dependence of periodic type due mainly to time-of-the-day phenomena. In this work we introduce a model able to describe the empirical evidence given by this periodic longmemory behaviour. The model, named PLM-GARCH (Periodic Long Memory GARCH), represents a natural e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000